Forum Zero - Türkiyenin En İyi Online Oyun Forumu

   


Go Back   Forum Zero - Türkiyenin En İyi Online Oyun Forumu > Eğitim Dünyası > Lise Ansiklopedisi > Matematik


Yeryüzün de Henüz Kimsenin Cevabini Bilmediği Sorular...

Matematik


Cevapla
 
LinkBack Seçenekler Arama Stil
Alt 03 Kasım 2013   #1
MyHorsesYouToo
OConner - ait Kullanıcı Resmi (Avatar)
Üye Profil Bilgileri
Üyelik tarihi: 06 Temmuz 2012
Bulunduğu yer: İstanbul
Alter: 19
Mesajlar: 1.795
Konular: 1205
Rep Puanı: 30960
Rep Gücü: 1801
Rep Derecesi : OConner has a reputation beyond reputeOConner has a reputation beyond reputeOConner has a reputation beyond reputeOConner has a reputation beyond reputeOConner has a reputation beyond reputeOConner has a reputation beyond reputeOConner has a reputation beyond reputeOConner has a reputation beyond reputeOConner has a reputation beyond reputeOConner has a reputation beyond reputeOConner has a reputation beyond repute
Aldığı Teşekkürler: 28
Ettiği Teşekkürler: 23
OConner isimli Üyeye Skype üzeri Mesaj gönder
Standart Yeryüzün de Henüz Kimsenin Cevabini Bilmediği Sorular...

Ünlü Problemler

Yeryüzünde henüz cevabını kimsenin bilmediği sorular var!

Goldbach Kestirimi
Asal Sayılardan Karışık
Mükemmel Sayı Sorusu
Palindromik Sayılar
Collatz Problemi
Riemann Hipotezi
Binyılın Problemleri

Goldbach Kestirimi

1742'de Goldbach, Euler'e yazdığı bir mektupta "2'den büyük her çift sayı, iki asal sayının toplamı şeklinde ifade edilebilir" önermesinin, ya doğru olduğunu ispatlamasını ya da bunu sağlamayan bir örnek göstererek yanlış olduğunu ispatlamasını istedi. Goldbach kestirimi olarak bilinen bu hipotezle asal sayılar dünyasına yeni bir heyecan geldi. Bu heyecan o gün bugündür tüm matematikseverleri sardı. Yine de henüz bir cevap bulunamadı.

Ayrıca, 2'den başlayarak her çift sayıya 3 sayısı (ki bu bir asal sayı) ekleyerek tek sayılar kümesi elde edilebildiğine göre (örneğin:5=2+3; 7=4+3; 9=6+3...) her çift sayı 2 asal sayının toplamı ise her tek sayı da üç asal sayının toplamıdır denilebilir. Bu ifade de zayıf (ya da tek) Goldbach kestirimi olarak bilinir. Henüz bunun da bir yanıtı yok.


Asal Sayılardan Karışık

Asal sayılara ilişkin pek çok bilgi henüz gün ışığına çıkmadı. Bunun yanı sıra ortaya atılmış ama ispatlanmamış pek çok da kestirim var. İşte bunlardan birkaçı:

• n2 ve (n + 1)2 arasında daima bir asal var mıdır?

• İkiz Asallar: İkiz asallar yani aralarındaki fark 2 olan asallar sonsuz tane midir?

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43). ..???

• Bugün hala sonsuz tane elemanı olduğu kesin olarak ispatlanmayan (ama öyle olduğu tahmin edilen) bir diğer küme de farkı 2n olan asal çiftlerinin oluşturduğu kümelerin hepsinin sonsuz tane eleman içerdiği sanısı.Bu kestirimi ortaya atarak problemi genel bir boyuta taşıyansa da Alphonse de Polignac (1849). Örneğin Kuzen asallar olarak bilinen aralarındaki fark 4 olan asal sayıların oluşturduğu küme sonsuz eleman içerir mi?

• (n2 +1) formunda yazılabilen sonsuz tane asal var mıdır?

• Fermat Asalları: 17. yüzyılda amatör matematikçi ünvanı ile bilinen Fermat asal sayılar konusuna oldukça önemli katkılarda bulundu. Bu katkılar arasında doğru olduğunu iddia edip ispatlayamadığı kestirimler de vardı. Örneğin + 1 biçimindeki sayıların her n doğal sayısı için bir asal verdiğini iddia etti. Bu biçimdeki sayılara Fermat sayıları asal olanlara da Fermat asalları denir. Gerçekten de 5'e kadar tüm doğal sayılar için asal değer veren ifadenin yanlış olduğu ancak 100 yıldan fazla zaman sonra anlaşılabildi. n=5 için 232 + 1 = 4294967297 sayısının 641 ile bölündüğünün farkına varansa Euler oldu. Bugün ispatı yapılması beklenen önermelerden bir diğeriyse "Fermat asalları sonlu tanedir" kestirimi. Bu ifadenin en güçlü gerekçesiyse şimdiye kadar sadece 5 tane Fermat asalının bulunmasıdır



• Mersenne Asalları: Fermat'ın sıkça fikir alışverişinde bulunduğu çağdaşı Mersenne 2n - 1 şeklindeki sayılar üzerinde çalışıyordu. Mersenne sayıları (Mn) adı verilen bu sayıların başlangıçta n asal olduğunda asal değer verdiği düşünüldü. Gerçekten de n=11'e kadar doğru çalışan fikir 11'de asal olmayan bir değer alınca bu düşüncenin de yanlış olduğu anlaşılabildi ama 2n - 1'in asal olması için n'nin asal olması gerektiği şartı doğrudur. Yine de matematikçiler bu sayıların peşini bırakmadı. Sonsuz tane olup olmadıkları hala merak edilen Mersenne sayılarından Aralık 2005 itibariyle 43.sü bulundu.


Mükemmel Sayı Sorusu

Mükemmel sayı kendisi haricindeki tüm çarpanlarının toplamı kendisini veren sayıdır. Örneğin 6 bir mükemmel sayıdır çünkü kendisi haricindeki çarpanları yani 1, 2 ve 3 toplanınca kendisini verir: 1 + 2 + 3 = 6. Diğer örneklerse 28, 496, 8128 şeklinde gidiyor. Şimdiye kadar hiç tek mükemmel bir sayıya rastlanmamış. Merak edilen böyle bir sayının varolup olmadığı. Eğer vardır diyorsanız bu sayıyı, saklandığı yerden bulup çıkarmalı, ya da olmadığını iddia ediyorsanız bunu ispatlamalısınız.


Palindromik Sayılar

Kapak, kütük, sus, yay, kepek kelimeleri ilginç bir ortak özellik ile dikkat çekiyor: düzden ve tersten okunduğunda aynı. Benzer bir yapıya sahip olan palindromik sayılar da düzden ve tersten okunduğunda aynı olan sayılardır:
1991, 10001, 12621, 79388397, 82954345928.



Bu alandaki açık soru ise şöyle:

Hem asal hem de palindromik olan sonsuz tane asal sayı bulunabilir mi?


Collatz Problemi

Önce bir pozitif tamsayı seçin. Bu sayıya yapılcak işlem şu:

Sayı tekse 3 katını alıp 1 ekleyin. Sayı çiftse 2'ye bölün.

Aynı işleme çıkan sayıya uygulayın. En sonunda elde edeceğiniz sayı1'dir.

Örneğin 8 sayısını ele alalım:

8-(2'ye böl)-4-(2'ye böl)-2-(2'ye böl)-1

5-(3 katını al 1 ekle)-16-8-4-2-1

Seçtiğiniz sayıya dikkat edin. Örnek olarak 27 sayısını seçtiyseniz 1 sayısını bulmanız için 112 basamak ilerlemeniz gerektiriyor. Tabi kaç basamak alacağı sayının büyük veya küçük olmasıyla ilgili değil. Sadece bu algoritmanın her zaman 1 cevabını verdiğini ispatlamanın peşinde koşmayın. Unutmayın ki sonunda 1 vermeyen bir sayı da varolabilir ve bu da, sorunun cevaplandığı anlamına gelir.


Riemann Hipotezi

Bilindiği gibi asal sayılar düzenli bir dağılıma sahip değiller. Alman matematikçi G.F.B. Riemann (1826 - 1866) asal sayıların dağılımlarının Riemann-Zeta adını verdiği bir fonksiyon ile çok yakından ilişkili olduğunu gözlemledi. Söz konusu olan fonksiyon şöyle:



Bu fonksiyon s'nin 1 dışındaki her kompleks sayı değeri için tanımlıdır.

Riemann Hipotezine göre bu fonksiyonun, (s) = 0 ifadesini sağlayan tüm önemsiz olmayan s değerleri, reel kısmı ½ olan düşey doğru üzerine düşer (bu doğruya kritik doğru deniyor). İlk 1 500 000 000 değer için bu doğruluk tespit edilmiş olsa da asıl istenen, söz konusu tüm değerler için doğru olduğunun ispatlanması. Bu sorunun başında 1 milyon dolar ödül konulduğunu unutmayın!


Binyılın Problemleri: 1 milyon dolar kazanmak isteyenlere!

1 milyon dolar, yani bugün yaklaşık 1,5 milyon YTL (1,5 trilyon TL) kazanmak ister misiniz? Bunun için yapmanız gereken tek şey, belirlenmiş 7 sorudan birinin doğru cevabını vermeniz lazım. Defter, kitap serbest; süre sınırlaması da yok! Cevabı ilk veren siz olun da isterseniz aradan 100 yıl geçsin. Dikkatli olun, çünkü sözkonusu sorular, yeryüzünde henüz yanıtını kimsenin bilmediği ve uzun yıllar boyu çözülmeye ısrarla direnen cinsten sorular. Aynı zamanda, cevabı bulanın da yaşam standartlarını değiştirecek sorular bunlar. İlginç olansa başarıya ulaşan insanlar, özellikle de matematikçiler, bu paranın hayalini kurdukları için değil matematik yapmayı sevdikleri ve bu alanda başarı istedikleri için kolları sıvıyorlar. Para, bu başarının sonunda gelen bir ödülden başka birşey değil, onlar için.

Cambridge Massachusetts 'de kurulan Clay Matematik Enstitüsü, 24 Mayıs 2000'de çözülmekte inatçı, matematiğin farklı branşlarındaki 7 problemini Milenyum Problemleri olarak adlandırdığını ve her bir problemi ilk çözen kişiye 1'er milyon dolar vereceğini ilan etti. Bu soruları anlamak, bir parça matematik temeli gerektiriyor. Bu durum matematiğin, hızla büyümesinin ve lise eğitiminin onu yakalamaya yetmemesinin bir sonucu olabilir. Soruları anlamak için üniversitede matematik okumak şart değil elbette, sadece Fermat'ın son teoremini, Goldbach ya da ikiz asallar kestirimini anlamaktan daha fazla çaba sarfetmek lazım. Eğer Riemann Hipotezi, P, NP'ye karşı Hodge Kestirimi, Yang-mills Kuramı, Poincare Kestirimi, Navier Stokes denklemleri, Birch ve Swinnerton-Dyer Kestirimi başlıklı sorulardan birinin yanıtını bulduysanız bu organizsonu yapan Clay Matematik Enstitüsü'ne yollamadan önce uluslarası kabul gören hakemli bir dergide yayınlamanız gerekiyor.



Üye Profil Bilgileri



KARAKARTAL!
OConner isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
Cevapla

Seçenekler Arama
Stil

Yetkileriniz

Benzer Konular
Konu Konuyu Başlatan Forum Cevaplar Son Mesaj
sorular ve sorular :skylab bot-pet protokolü-şahsi fikirler hakkında nadiras Darkorbit Botlar ve Buglar 5 20 Haziran 2013 03:14
Aziz Yıldırım: Henüz kimseyle anlaşmadım STaRZoN Fenerbahçe 0 31 Mayıs 2013 18:24
Kafkas: Kimsenin Adamı Değilim Skıllet Güncel Haberler 0 13 Nisan 2013 00:56
Dead Space 3'ü henüz denemeyenler için son bir defa (Video) Revenge77 Oyun Haberleri 0 09 Şubat 2013 17:47
BiteFight Sıkça Sorular Sorular SlayerFxR Bitefight 1 11 Aralık 2012 23:37

Tüm Zamanlar GMT +3 Olarak Ayarlanmış. Şuanki Zaman: 00:19.

Sistem Bilgileri Bilinmesi Gerekenler
Powered by vBulletin® Version 3.8.4
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
Search Engine Optimization by vBSEO 3.6.1
User Alert System provided by Advanced User Tagging v3.1.0 (Lite) - vBulletin Mods & Addons Copyright © 2017 DragonByte Technologies Ltd. Runs best on HiVelocity Hosting.
Lütfen Sorunlarınızı Buradan Bize Bildiriniz.

Sitedeki Tüm Paylaşımların Sorumlulukları Paylaşım Sahiplerine Aittir.
Soru Ve Sorunlarınız İçin Lütfen İletişim Bölümünü Kullanınız
Tema Tasarımı ForumZero.Net - Foxin


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736