Forum Zero - Türkiyenin En İyi Online Oyun Forumu

   


Go Back   Forum Zero - Türkiyenin En İyi Online Oyun Forumu > Eğitim Dünyası > Lise Ansiklopedisi > Matematik


Mükemmel sayılar

Matematik


Cevapla
 
LinkBack Seçenekler Arama Stil
Alt 29 Ekim 2013   #1
MyHorsesYouToo
OConner - ait Kullanıcı Resmi (Avatar)
Üye Profil Bilgileri
Üyelik tarihi: 06 Temmuz 2012
Bulunduğu yer: İstanbul
Alter: 19
Mesajlar: 1.795
Konular: 1205
Rep Puanı: 30960
Rep Gücü: 1801
Rep Derecesi : OConner has a reputation beyond reputeOConner has a reputation beyond reputeOConner has a reputation beyond reputeOConner has a reputation beyond reputeOConner has a reputation beyond reputeOConner has a reputation beyond reputeOConner has a reputation beyond reputeOConner has a reputation beyond reputeOConner has a reputation beyond reputeOConner has a reputation beyond reputeOConner has a reputation beyond repute
Aldığı Teşekkürler: 28
Ettiği Teşekkürler: 23
OConner isimli Üyeye Skype üzeri Mesaj gönder
Standart Mükemmel sayılar


Kendisi dışındaki bütün pozitif bölenleri (çarpanları) toplamı sayının kendisine eşit olan sayılara, mükemmel sayılar denir.

Bunlardan en bilineni 6 dır.


Bakalım 6 mükemmel bir sayımı. 6 yı tam bölen sayılar 1, 2 ve 3 tür. Bölenlerin toplamı


1+2+3=6 görüldüğü üzere 6 Mükemmel sayı kuralına uyuyor.


28 de bir mükemmel sayıdır.
28 in tüm bölenleri 1,2,4,7,14 tür toplamları 1+2+4+7+14=28 dir.
Görüldüğü üzere 28 de bir mükemmel sayıdır.
2n .( 2n+1-1 )
Mükemmel sayı bulmak için genel bir formül yoktur ancak yukarıda verilen formülle elde edilen sayılar birer mükemmel sayıdır. Formülden anlaşılacağı üzere, formülü kullanarak elde edeceğiniz mükemmel sayılar çifttir. Bu arada şunuda söyleyelim bilinen mükemmel sayılar içinde tek sayı olanları yoktur.

SAYILARIN GİZEMİ

1 x 8 + 1 = 9
12 x 8 + 2 = 98
123 x 8 + 3 = 987
1234 x 8 + 4 = 9876
12345 x 8 + 5 = 98765
123456 x 8 + 6 = 987654
1234567 x 8 + 7 = 9876543
12345678 x 8 + 8 = 98765432
123456789 x 8 + 9 = 987654321
1 x 9 + 2 = 11
12 x 9 + 3 = 111
123 x 9 + 4 = 1111
1234 x 9 + 5 = 11111
12345 x 9 + 6 = 111111
123456 x 9 + 7 = 1111111
1234567 x 9 + 8 = 11111111
12345678 x 9 + 9 = 111111111
123456789 x 9 +10 = 1111111111

0 x 9 +8 = 8
9 x 9 + 7 = 88
98 x 9 + 6 = 888
987 x 9 + 5 = 8888
9876 x 9 + 4 = 88888
98765 x 9 + 3 = 888888
987654 x 9 + 2 = 8888888
9876543 x 9 + 1 = 88888888
98765432 x 9 + 0 = 888888888

1 x 1 = 1
11 x 11 = 121
111 x 111 = 12321
1111 x 1111 = 1234321
11111 x 11111 = 123454321
111111 x 111111 = 12345654321
1111111 x 1111111 = 1234567654321
11111111 x 11111111=123456787654321
111111111x111111111=1234567898 7654321

3 x 37 = 111
6 x 37 = 222
9 x 37 = 333
12 x 37= 444
15 x 37 = 555
18 x 37 = 666
21 x 37 = 777
24 x 37 = 888
27 x 37 = 999


BÜYÜK SAYILARIN ADLANDIRILMASI

Kullandığımız büyük sayılar milyon, milyar en fazla katrilyondu peki ya sonra ne geliyor?
Bir milyon
1.000.000
Bir milyar
1.000.000.000

Bir trilyon
1.000.000.000.000

Bir katrilyon
1.000.000.000.000.000

Bir kentilyon
1.000.000.000.000.000.000

Bir seksilyon
1.000.000.000.000.000.000.000

Bir septilyon
1.000.000.000.000.000.000.000. 000

Bir oktilyon
1.000.000.000.000.000.000.000. 000.000

Bir nobilyon
1.000.000.000.000.000.000.000. 000.000.000

Bir desilyon
1.000.000.000.000.000.000.000. 000.000.000.000


DAHA BÜYÜK SAYILAR NASIL ADLANDIRILIR?
10^0. Bir (1)
10^3. Bin (1.000)
10^6. Milyon (1.000.000)
10^9. Milyar (1.000.000.000)
10^12. Trilyon (1.000.000.000.000)
10^15. Katrilyon
10^18. Kentilyon
10^21 Seksilyon
10^24. Septilyon
10^27. Oktilyon
10^30. Nonilyon
10^33. Desilyon
10^36 . Undesilyon
10^39 . Dodesilyon
10^42 . Tredesilyon
10^45 . Kattuordesilyon
10^48 . Kendesilyon
10^51 . Sexdesilyon
10^54 . Septendesilyon
10^57 . Oktodesilyon
10^60 . Novemdesilyon
10^63 . Vigintilyon
10^66 . Unvigintilyon
10^69 . Dovigintilyon
10^72 . Trevigintilyon
10^75 . Kattuorvigintilyon
10^78 . Kenvigintilyon
10^81 . Sexvigintilyon
10^84 . Septenvigintilyon
10^87 . Oktovigintilyon
10^90 . Novemvigintilyon
10^93 . Trigintilyon
10^96 . Untrigintilyon
10^99 . Dotrigintilyon
10^102 . Tretrigintilyon
10^105 . Kattuortrigintilyon
10^108 . Kentrigintilyon
10^111 . Sextrigintilyon
10^114 . Septentrigintilyon
10^117 . Oktotrigintilyon
10^120 . Novemtrigintilyon
10^123 . Katragintilyon
10^126 . Unkatragintilyon
10^129 . Dokatragintilyon
10^132. Trekatragintilyon
10^135. Kattuorkatragintilyon
10^138. Kenkatragintilyon
10^141. Sexkatragintilyon
10^144. Septenkatragintilyon
10^147. Oktokatragintilyon
10^150. Novemkatragintilyon
10^153. Kenquagintilyon
10^156. Unkenquagintilyon
10^159. Dokenquagintilyon
10^162. Trekenquagintilyon
10^165. Kattuorkenquagintilyon
10^168. Kenkenquagintilyon

Not: 10^3 on üzeri 3 demektir.

PRATİK HESAPLAMA YÖNTEMLERİ

5 ile çarpma: Çarpılacak sayının yarısı alınır ve sağına bir sıfır konulur. Sayı tek ise yarısı virgüllü olacaktır bu durumda virgül bir basamak sağa kaydırılır. (14x5=70)
25 ile çarpma: Sayının dörtte biri ve sağına iki sıfır ilave edilir. Virgüllü sonuç varsa iki virgül kaydırılır.(28x25=700)
50 ile çarpma: 5 ile çarpma ile aynıdır. Farkı sayının yarısı alındıktan sonra sonuna iki sıfır eklenir.(14x50=700)
15 ile çarpma: Sayının kendisi ve yarısı toplanır sonuna bir sıfır ilave edilir.(60x15=900)
11 ile çarpma: Eğer 11 ile çarpacağınız sayı iki basamaklıysa sayının birler ve onlar basamağı toplanır sayının ortasına yazılır.(27x11, 2+7=9, 27x11=297) Eğer toplam 10 ve daha büyük sayı ise elde onlar basamağına aktarılır.(38x11 , 3+8=11, 38x11=418)
9 ile çarpma: Sayı 10 ile çarpılır ve kendisi çıkartılır.
5 ile bölme: Sayının iki katı alınır ve bir sıfır eksiltilir. Sayının sonunda sıfır yoksa bir virgül sola kaydırılır.(25:5=5, 32:5=6,4)
25 ile bölme: Sayının dört katı alınır ve iki sıfır çıkarılır.(120:25=4,8)
10 ile çarpma: 10 ile çarpılan sayının sonuna bir sıfır ilave edilir. Eğer sayı virgüllüyse virgül sağa doğru kaydırılır. [15x10=150](10 un katları içinde aynı kural geçerlidir.)

Pİ SAYISI

Kısaca bir dairenin çevresinin çapına oranı, pi sayısını verir. İnsanoğlu, aslında çok önemli vazifeleri olan bu sayı üzerinde çok düşünmüştür. Yıllarca tam olarak bir değer bulamamakla beraber, gerçek değerine en yakın sonuçları kullanabilmek için çaba sarf etmişlerdir.
Pi' nin kronolojik gelişimine baktığımızda günümüzde dahi tam bir sonuç bulunamamıştır. Çeşitli formüller üretilmesine rağmen sadece her seferinde gerçek değere biraz daha yaklaşılmıştır.
Arşimet 3.1/7 ile 3.10/71 arasında bir sayı olarak hesapladı. Mısırlılar 3.1605, Babilliler 3.1/8, Batlamyus 3.14166 olarak kullandı. İtalyan Lazzarini 3.1415929, Fibonacci ise 3.141818 ile işlem yapıyordu. 18.yyda 140, 19yyda 500 basamağa kadar hesaplandı. İlk bilgisayarlarla 2035 basamağı hesaplanırken günümüzde milyonlarca basamağa kadar çıkılıyor. İşin ilginç tarafı, hâlâ tam bir sonuç yok. Herhangi bir yerinde devir olsa iş yine kolaylaşacak. Ama henüz öyle bir şeye de rastlanmadı.


MOEBİUS ŞERİDİ



"Dikdörtgen bir kağıt şeridi alıp bir ucundan tutup 180 derece çevirip, şeridin diğer ucuna yapıştırılınca ortaya çıkan şekle Moebius Şeridi denir ."

Moebious şeridi kendisi ilk tek yüzlü bir şekil olup A.F.Moebius (1790-1860) tarafından bulunmuştur. Fakat bulunur bulunmaz meşhur olamamıştır, meşhur olması bir matematikçi ve sanat adamı olan M.C.Escher (1898-1972) sayesinde gerçekleşmiştir.


İLGİNÇ BİLGİLER


1. Saniyede bir sayı söyleyerek ve günde 7 saat sayarak 1 milyara kadar saymak isteseydik, bunu ne kadar zamanda yapabilirdik?

Cevap: 60 . 60 . 7 . 365=108.7 sene.

2. 9' un 9. kuvvetinin 9. kuvveti, yani, sadece üç rakamla ifade edilebilen en büyük sayıdır. Bu sayıyı henüz kimse hesaplayamadı.

Cevap: 369 milyon basamaklı bir sayıdır.

3. 1729 iki kübün toplamı olarak iki ayrı biçimde ifade edilebilen en küçük sayıdır.
1729=103+93 = 123+ 13
Bunu ilk fark eden Hintli matematikçi Ramanujan' dır. İlginç olan bu işlemi daha sayıyı duyar duymaz zihninden yapmış olmasıdır. Bu sayıya Ramanujan Sayısı denir.

4. 1 ve kendisinden başka sayılara bölünemeyen pozitif sayılara asal sayı denir.En küçük asal sayı 2 dir. Bilinen en büyük asal sayı 2127-1 'dir. Bu sayı 39 basamaklıdır.

5. Googol nedir?
1 den sonra 100 sıfır yazılarak elde edilen sayıya bu ad verilmiştir (yani, 10100). Şimdiye kadar isimlendirilen en büyük sayılardan biridir. Googolplex, googoldan da büyük bir sayıdır. Bir googolplex 1 den sonra bir googol sıfır yazılarak elde edilen sayıdır. Bu sayıyı yazmak için Dünya-Ay arası uzaklığın yetmeyeceğini iddia edenler var.


6. Tüm matematik derslerinde en az bir öğrencinin çıkıp "hocam bunlar gerçek hayatta ne işimize yarayacak?" diye sorması.











Üye Profil Bilgileri



KARAKARTAL!
OConner isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
Cevapla

Seçenekler Arama
Stil

Yetkileriniz

Benzer Konular
Konu Konuyu Başlatan Forum Cevaplar Son Mesaj
0'dan 14'e Sayılar !! rakosever45 Zeka Soruları & Bilmeceler 0 19 Ekim 2013 23:51
15 Mükemmel Hayvan Crawler Diğer Videolar 0 02 Temmuz 2013 00:49
Sayılar Yalan Söylemez Mi ? kasttas Komik Yazılar & Fıkralar 0 20 Aralık 2012 19:35
Mükemmel Bug huro08 Forum Çöplüğü 3 27 Haziran 2012 10:16

Tüm Zamanlar GMT +3 Olarak Ayarlanmış. Şuanki Zaman: 10:41.

Sistem Bilgileri Bilinmesi Gerekenler
Powered by vBulletin® Version 3.8.4
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
Search Engine Optimization by vBSEO 3.6.1
User Alert System provided by Advanced User Tagging v3.1.0 (Lite) - vBulletin Mods & Addons Copyright © 2017 DragonByte Technologies Ltd. Runs best on HiVelocity Hosting.
Lütfen Sorunlarınızı Buradan Bize Bildiriniz.

Sitedeki Tüm Paylaşımların Sorumlulukları Paylaşım Sahiplerine Aittir.
Soru Ve Sorunlarınız İçin Lütfen İletişim Bölümünü Kullanınız
Tema Tasarımı ForumZero.Net - Foxin


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736